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Abstract

This is a note on chromatic homotopy theory, rewriting Chapters 1,2,3,7 of Ravenel’s

orange book.
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1 Notations

For a topological space X , let πS
∗ (X) := be its stable homotopy groups.

Let S be the sphere spectrum.

Let SG be the Moore spectrum of an abelian group G.

For spacesX,Y , let [X,Y ]S∗ := colim[Σi+∗X,ΣiY ] be the stable homotopy groups of maps.

For a homology theory E∗, let E∗ be the associated homology theory. By abuse of notation,

we also denote the coefficient ring by E∗ := E∗(pt).

2 Rough Idea of Chromatic Homotopy Theory

In number theory, we have the Sullivan fracture square:

Z
∏

p : prime Zp

Q Q⊗
(∏

p : prime Zp

)
There is a similar fracture square in homotopy theory. First, we have the similar definition of

localization:

Definition 2.1 (E-acyclic, E-local, E-localization). Let E∗ be a generalized homology theory.

A spectrum X is E∗-acyclic if E∗(X) = 0. A space Y is E∗-local if [X,Y ]∗ = 0 for any

E-acyclic X .

An E∗-localization of a spectrum X is a map η : X → LEX such that E∗(η) is an isomor-

phism.

Theorem 2.2 (Bousfield). Such LEX always exists and is functorial in X .

Theorem 2.3. For any spectrum X ,

X
∏

p : prime LpX

LQX LQ
(∏

p : prime LpX
)

where LpX := LSFpX , LQX := LSQX (which is the rationalization of X when X is a CW-

complex).
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That is, we can get the global information of the spectrum X through p-completion, ratio-

nalization and how they are glued together. Also, similar to algebra, the p-completion of the

spaceX can be constructed from the completion of the p-localization ofX , i.e., LSZ(p)
X . This

inspires us to investigate the p-localization of a spectrum X , which turns out to have a nice

structure and be computable.

Theorem 2.4 (Chromatic Convergence Theorem). Suppose that X is a p-local spectrum, i.e.,

it is the p-localization of some spectrum. Then we haveX ∼= holimLnX , where LnX ∼= LEnX

and En is the Morava E-theory (also called Lubin-Tate theory).

Theorem 2.5 (Smash Product Theorem). For any spectrum X , LnX ∼= X ∧ LnS.

Therefore, we can recover the information of X from LnX ∼= X ∧ LnS. Then we are

reduced to compute LnS, which can be decomposed further:

Proposition 2.6. Let K(n) be the Morava K-theory and X be an arbitrary spectrum.

LnX LK(n)X

Ln−1X Ln−1LK(n)X

Therefore, we are reduced to calculateLK(n)X , which is somehow related to the equivariant

stuff:

Theorem 2.7 (Devinatz-Hopkins). LK(n)S ∼= EhGn
n , where Gn is called the Morava stabilizer

group.

3 Periodicity Theorem

Due to the discussion in Section 2, from now on we will focus on the case of p-local spec-

tra. There is a sequence of useful homology theories in investigating p-local spectra called the

Morava K-theory. They will give a filtration of the category of p-local spectra. The construction

is tedious and artificial, so we only display some properties ofK(n) here:

Proposition 3.1. For each prime p there is a sequence of homology theories K(n)∗ for n ⩾ 0

with the following properties.

(i) K(0)∗(X) = H∗(X;Q) and K(0)∗(X) = 0 when H∗(X) is all torsion.
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(ii) K(1)∗(X) is one of p− 1 isomorphic summands of mod p complex K-theory.

(iii) K(0)∗ = Q and for n > 0, K(n)∗ = Fp[v
±
n ] where the dimension of vn is 2pn − 2. This

ring is a graded field in the sense that every graded module over it is free. For each

n ⩾ 0, K(n)∗(X) is a module over K(n)∗.

(iv) K(n)∗(X × Y ) ∼= K(n)∗(X)⊗K(n)∗ K(n)∗(Y ).

(v) Let X be a p-local finite CW-complex. If K(n)∗(X) = 0, then K(n− 1)∗(X) = 0.

(vi) Let X be a p-local finite CW-complex.

K(n)∗(X) = K(n)∗ ⊗Fp H∗(X;Fp)

for n sufficiently large. In particular, it is nontrivial if X is simply connected and not

contractible.

Definition 3.2 (Type). A p-local finite complex X has type n if n is the smallest integer such

thatK(n)∗(X) is nontrivial. If X is contractible, it has type∞.

Besides the types, Morava K-theories are useful in detecting periodic self-maps of a spec-

trum, which will give finer structures of the homotopy groups.

Theorem 3.3 (Periodicity theorem). Let X,Y be p-local finite CW-complexes of type n for

finite n.

(i) There is a map f : Σd+iX → ΣiX for some i ⩾ 0 such thatK(n)∗(f) is an isomorphism

and K(m)∗(f) = 0 for m 6= n. (We will refer to such a map as a vn-map) When n = 0

then d = 0, and when n > 0 then d is a multiple of 2pn − 2.

(ii) Suppose h : X → Y is a continuous map. Assume that both have been suspended enough

times to be the target of a vn-map. Let g : ΣeY → Y be a self-map as in (i). Then there

are positive integers i and j with di = ej such that the following diagram commutes up

to homotopy.

ΣdiX ΣdiY

X Y
h

f i gj

Σdih

If we take h = IdX , then the second part of the periodicity theorem says that the vn-map is

unique up to powers.
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4 Geometric Chromatic Filtration and Telescope Conjecture

Theorem 2.4 tells us that there is a filtration of the homotopy group:

C a
0 (X) := π∗(X)

C a
n (X) := ker

(
π∗(X) → π∗(LnX)

)
C a
0 (X) ⊃ C a

1 (X) ⊃ C a
2 (X) ⊃ · · ·

This is called the algebraic chromatic filtration, but K(n) and En are so manufactured. In this

section, we are aiming to give a geometric model for this filtration.

Lemma 4.1. Suppose X has type n. Then the cofiber W of the map f : Σd+iX → ΣiX given

by Theorem 3.3 has type n+ 1.

Proof. For eachm, we have a long exact sequence:

· · · → K(m)t(Σ
d+iX)

f∗→ K(m)t(Σ
iX) → K(m)t(W ) → K(m)t−1(Σ

d+iX)
f∗→ · · ·

When m < n, K(m)∗(Σ
d+iX) = K(m)∗(Σ

dX) = 0, so K(m)∗(W ) = 0. When m = n, f∗

are isomorphisms, so K(m)∗(W ) = 0 again. When m = n + 1, f∗ = 0, so K(m)∗(W ) =

K(m)∗−1(Σ
d+iX) is nontrivial by Proposition 3.1.

Proposition 4.2. Let X be a CW-complex and X(p) := LSZ(p)
X . Then E∗(X(p)) ∼= E∗(X) ⊗

Z(p). If X is finite, X(p) is also finite.

Suppose X is a p-local complex. Then each element x ∈ πS
k (X) has infinite order or order

pi for some i. If y has infinite order, then it has a nontrivial image in πS
k (X)⊗Q, which is left

for rational homotopy theory.

On the other hand, if x has order pi for some i, then the composite (Here we omit the

suspension for simplicity)

Sk pi→ Sk x→ X

is null-homotopic. Technically, we localize at p here. Then x factors through the cofiberW (1)

of pi : Sk
(p) → Sk

(p). Note that the sphere spectrum has type 0 and the map pi is a v0-map. Thus,

W (1) has type 1. Therefore, it admits a v1-map f1 : Σ
d1W (1) → W (1). Hence, we have the

following diagram:
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Sk
(p) Sk

(p) X

Σd1W (1) W (1)

pi y

g1

f1

If the composite of g1 and all powers of f1 are not null-homotopic, then g1 has a nontrivial

image in v−1
1 [W (1), Y ]S∗ , which is the colimit

[W (1), X]S∗
f∗
1−→ [Σd1W (1), X]S∗

f∗
1−→ [Σ2d1W (1), X]S∗

f∗
1−→ · · ·

On the other hand, if g1f i1
1 is null-homotopic for some i1. Let W (2) be the cofiber of the map

f i1
1 : Σd1i1W (1) → W (1). Iterating this process we get a diagram:

Sk
(p) Sk

(p) X

Σd1i1W (1) W (1)

Σd2i2W (2) W (2)

...

pi x

g1

f
i1
1

f
i2
2

g2

Definition 4.3 (Geometric chromatic filtration). If an element x ∈ πS
∗ (X) extends to a p-local

complex W (n) of type n, then x is vn−1-torsion. If in addition x does not extend to a p-local

complex of type n+ 1, it is vn-periodic. The geometric chromatic filtration of πS
∗ (X) is the

decreasing family of subgroups consisting of the vn-torsion elements for various n ⩾ 0.

Conjecture 4.4 (Telescope Conjecture). The algebraic chromatic filtration is the same with the

geometric chromatic filtration.

Finally, we want to talk about why this conjecture is called ”telescope” and interpret the geo-

metric filtration in the viewpoint of Bousfield localization.

Definition 4.5 (Telescope of a self-map). Let f : ΣdX → X be a self-map. Then the telescope

of f is the homotopy colimit

X̂ := f−1X := hocolim
(
X

Σ−df−→ Σ−dX
Σ−2df−→ Σ−2dX

Σ−3df−→ · · ·
)
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By Theorem 3.3(ii), X̂ is independent of the choice of f , since the vn-maps are unique up to

powers.

In analogy with algebra, this likes

M [f−1] = colim(M
f→ M

f→ M → · · · )

whereM is an R-module and 0 6= f ∈ R.

Definition 4.6 (Telescope Localization). Let Tel(n) := f−1
n W (n), where W (n) is defined as

above. Define the telescope localization by

Lf
nX := LTel(0)∨···∨Tel(n)X

By Theorem 6.6, this definition does not rely on the choice ofW (n). Actually, we can take

arbitrary p-local finite CW-complex of type n. That is why we take the p-localization at the

beginning of the construction.

Example 4.7. If X is of type n with vn-self map f , then Lf
nX

∼= X̂ . See [Lur10, Lecture 28,

Proposition 1]. That is why this is called the ”telescope” localization.

Now suppose x ∈ πk(X) is v0-torsion, i.e., it can factor throughW (1) defined above. Due

to 6.5, Ŝk
(p) ∧ W (1) is contractible. Therefore, W (1) is Ŝk

(p)-acyclic. Since L
f
0X = LŜk

(p)
X is

Ŝk
(p)-local, [W (1), LŜk

(p)
X] = 0. Hence, x has trivial image in π∗(X) → π∗(L

f
nX). Conversely,

Tel(0) = p−1S(p), so H∗(p
−1S(p)) = p−1Z(p) = Q. Therefore, Tel(0) = SQ = HQ = K(0).

If x has trivial image in π∗(X) → π∗(L
f
0X), then it factors through the fiber of X → Lf

0X .

Since the fiber is Tel(0)-acyclic, it has type ⩾ 1, so x is v0-torsion.

This is true for the general case with more knowledge about Bousfield localization. There-

fore, under the viewpoint of localization, the geometric chromatic filtration becomes

C g
0 (X) := π∗(X)

C g
n (X) := ker

(
π∗(X) → π∗(L

f
nX)

)
C g
0 (X) ⊃ C g

1 (X) ⊃ C g
2 (X) ⊃ · · ·

And the telescope conjecture says that C g
n = C a

n or Lf
n = Ln in other word. By above discus-

sion, this is true when n = 0. When n = 1, the case of p > 2 is proved by Miller and the case
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of p = 2 is proved by Mahowald [Bea19, Part III].

The geometric side is more natural and conceptual while the algebraic side is more manu-

factured and computable. For example, we do not have a chromatic convergence theorem for

Lf
nX and the Adams-Novikov spectral sequence may not converge for π∗(L

f
nX), so π∗(L

f
nX)

is hard to compute.

Now suppose that x : Sk → X is vn-periodic and that it extends to gn : W (n) → X . Sup-

pose e : SK → W (n) is the bottom cell inW (n). Then for each i, we have a composition

SK+dni Σdnie→ ΣdniW (n)
f i
n→ W (n)

gn→ X

We can play the same game as above to get a nontrivial element in πS
∗ (X).

Definition 4.8 (vn-periodic family). Given a vn-periodic element x ∈ πS
∗ (X), the element

described above for various i > 0 constitute the vn-periodic family associated with x.

5 Thick Category Theorem

5.1 The category CΓ

Let L ∼= Z[x1, x2, · · · ] be the Lazard ring and G(x, y) be the universal formal group law over

L.

Definition 5.1. LetΓ be the group of power series overZ having the form γ = x+b1x+b2x+· · ·

where b1, b2, · · · ∈ Z. Then Γ acts on L by the following. Note that γ−1

(
G
(
γ(x), γ(y)

))
∈

FGL(L). It is determined by a homomorphism L → L. Since γ is invertible, this endomor-

phism is an automorphism, which is the desired action.

Let MU be the complex cobordism theory. Then Γ also acts naturally on MU∗(X) com-

patibly with the action onMU∗.

Remark. According to [Rav92, Section 3.3], this action is an analogy to the action of the

group of multiplicative cohomology operations. For example, in the mod 2 case, we consider
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multiplicative cohomology operations ϕ

ϕ : H1(X;F2) → H∗(X;F2)[t] = H∗(X × RP∞;F2)

x 7→
∞∑
i⩾1

ϕi(x)

Suppose H1(RP∞;F2) = F2[a]. For any x ∈ H1(X;F2), x can be viewed as a map X →

K(F2, 1) = RP∞ such that the following diagram commutes:

H∗(RP∞;F2) H∗(RP∞;F2) a
∑

ϕi(a)

H∗(X;F2) H∗(X;F2) x
∑

ϕi(x)

x∗

ϕ

ϕ

(x×id)∗

Therefore, ϕ is determined by its effect on the generator of a. If ϕ is in the group of multiplicative

cohomology operations, ϕ1(a) = t, so the group of such multiplicative cohomology operations

can be embedded into ΓF2 , which is the analog of Γ over F2.

Definition 5.2. Let CΓ be the category of finitely presented graded L-modules equipped with

an action of Γ compatible with its action on L. Let FH be the homotopy category of finite

CW-complexes.

Therefore, MU∗ is a functor from FH to CΓ, which is more accessible and is the main

object in this subsection.

Let vn ∈ L denote the coefficient of xpn in the p-series for the universal formal group law. It

can be shown that vn can serve as a polynomial generator in dimension 2pn−2 [Lur10, Lecture

13, Proposition 1]. Let Ip,n := (p, v1, · · · , vn−1) ⊂ L.

Theorem 5.3 (Invariant Prime Ideal Theorem). The only prime ideals in L which are invariant

under the action of Γ are the Ip,n defined above, where p is a prime integer and n ∈ N, possibly

∞. By convention, Ip,0 = 0.

Moreover, (L/Ip,n)Γ = Fp[vn] for n > 0 and LΓ = Z.

Proof. For references, see [Rav92, Theorem 3.3.6].

Theorem 5.4 (Landweber Filtration Theorem). Every moduleM inCΓ admits a finite filtration

by submodules inCΓ as above in which each subquotient is isomorphic to a suspension (recall

these modules are graded) of L/Ip,n for some prime p and finite n.
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Proof. For references, see [Rav92, Theorem 3.3.7].

We may consider L/Ip,n classifying formal group laws of height greater or equal to n. Then

the filtration looks like a filtration of MU such that each subquotient is a suspension of some

universal spectra within the category of complex oriented spectra with formal group laws of

height ⩾ n.

Remark. In fact, the Landweber exact functor theorem is proved using the above two theorems.

Remark. A finitely generated module M over a Noetherian ring R has a finite filtration with

each subquotient equals to R/I for some prime ideal I . Note that L is not Noetherian, but it is

a limit of Noetherian rings, so finitely presented modules over it admits similar filtrations. That

is why we define CΓ to be the category of such modules.

Corollary 5.5. Suppose M is a p-local module in CΓ and x ∈ M .

(a) If x is annihilated by some power of vn, then it is annihilated by some power of vn−1, so

if v−1
n M = 0, then v−1

n−1M = 0.

(b) If x is nonzero, then there is an n so that vknx 6= 0 for all k, so if M is nontrivial, then so

is v−1
n M for all sufficiently large n.

(c) If v−1
n−1M = 0, then there is a positive integer d such that multiplication by vdn in M

commutes with the action of Γ.

(d) Conversely, if v−1
n−1M is nontrivial, then there is no positive integer k such that multipli-

cation by vkn in M commutes with the action of Γ on x.

Proof. Proofs are similar to 5.9. See [Rav92, Corollary 3.3.9].

The first two statements are similar to the one ofMoravaK-theory. In fact, for a finite p-local

CW-complexX , v−1
n MU∗(X)(p) = 0 if and only ifK(n)∗(X) = 0. One can replaceK(n)∗ by

v−1
n MU(p) in the statement of the periodicity theorem. The third statement is an analogy of the

periodicity theorem.

Definition 5.6. A p-local module M in CΓ has type n if n is the smallest integer with v−1
n M

nontrivial. A homomorphism f : ΣdM → M in CΓ is a vn-map if it induces an isomorphism

in v−1
n M and the trivial homomorphism in v−1

m M form 6= n.
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Corollary 5.7. If M in CΓ is a p-local module with v−1
n−1M nontrivial, then M does admit a

vn-map.

Proof. Proof is similar to 5.9. See [Rav92, Corollary 3.3.11].

5.2 Thick Subcategories

Definition 5.8 (Thick Subcategory). A full subcategory C of CΓ is thick is it satisfies that if

0 → M ′ → M → M ′′ → 0

is a short exact sequence, thenM is in C if and only ifM ′,M ′′ are in it.

A full subcategory F of FH is thick if it satisfies the following axioms:

(a) If

X
f→ Y → Cf

is a cofiber sequence in which two of the three spaces are in F, then so is the third.

(b) If X ∨ Y is in F then so are X and Y .

Using Landweber filtration theorem we can prove that

Theorem 5.9. LetC be a thick subcategory ofCΓ(p), the subcategory of all p-local modules in

CΓ. ThenC is either all ofCΓ(p), or consists of all p-local modulesM inCΓwith v−1
n−1M = 0.

We denote the latter category by CΓp,n.

Proof. There is largest n such that CΓp,n ⊃ C and C ⊈ CΓp,n+1. Then choose M ∈ C −

CΓp,n+1. Then v−1
n M 6= 0 and v−1

n−1M = 0. Choose a Landweber filtration of M . Then there

is a such quotient equals to a suspension of MU∗/Ip,k with v−1
n MU∗/Ip,k 6= 0. Thus, k ⩽ n.

Since v−1
n−1MU∗/Ip,k = 0, k = n. Therefore, MU∗/Ip,n ∈ C. Note that there is an exact

sequence

0 → Ip,m/Ip,n → MU∗/Ip,n → MU∗/Ip,m → 0

for m ⩾ n. Since C is thick, MU∗/Ip,m ∈ C. For all N ∈ CΓp,n, v−1
n−1N = 0. Therefore,

every subquotient of N is a suspension ofMU∗/Ip,m form ⩾ n, so N ∈ C.

The proof suggests that CΓp,n actually consists of modules admitting a filtration such that

each subquotient is a suspension ofMU∗/Ip,m form ⩾ n.
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In fact, generators other than v1, v2, · · · act freely on anyM ∈ CΓ. If we localize L at p and

drop out all generators other than v1, v2, · · · , we get Z(p)[v1, v2, · · · ]. The cohomology theory

associated to this ring is called the Brown-Peterson theory BP . Then we get a filtration of BP

by prime ideals

0 = Ip,0 ⊂ Ip,1 ⊂ Ip,1 ⊂ · · ·

If we view MU as Z and BP as the stalk Z(p) of Z at p, the filtration of BP is a filtration of

the stalk by heights. Then any M ∈ CΓp,n is a composition of ”sub-stalks” of BP consisting

of elements of height ⩾ n.

There is an analogous result about thick subcategories of FH(p).

Theorem 5.10 (Thick Category Theorem). LetF be a thick subcategory ofFH(p), the category

of p-local finite CW-complexes. ThenF is either all ofFH(p), the trivial subcategory or consists

of all p-local finite CW-complexes X with K(n)∗(X) = 0, which is equivalent to say that

v−1
n−1MU∗(X) = 0. We denote the latter category by FHp,n.

Therefore, we have two sequences of thick subcategories, where MU∗(·) sends one to the

other.

FH(p) = FHp,0 ⊃ FHp,1 ⊃ FHp,2 ⊃ · · · ⊃ ∗

CΓ(p) = CΓp,0 ⊃ CΓp,1 ⊃ CΓp,2 ⊃ · · · ⊃ 0

Under such a point of view, the geometric chromatic filtration becomes

Sk
(p) X

W (1)

W (2)

...

FHp,1 3

FHp,2 3

FHp,0 3∪

∪

A map x : Sk → X is vn−1-torsion if and only if it can be induced from a smaller thick subcat-

egory FHp,n.
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6 Bousfield Equivalence

We first display some easy consequences of the definition of Bousfield localization.

Proposition 6.1. For any homology theory E∗,

(a) Any inverse limit of E∗-local spectra is E∗-local.

(b) If

W → X → Y → ΣW

is a cofiber sequence and any two of W , X and Y are E∗-local, then so is the third.

(c) If X ∨ Y is E∗-local, then so are X and Y .

In particular, (b)(c) say that E∗-local spectra form a thick subcategory.

Lemma 6.2. If E is a ring spectrum, then E ∧X is E∗-local for any spectrum X .

Proof. Suppose W is E∗-acyclic. Suppose η : S → E and m : E ∧ E → E are unit and

multiplication map of E respectively. For any f : W → E ∧X , we have

W E ∧X

E ∧W E ∧ E ∧X E ∧X

IdE∧X

f

η∧IdW

IdE∧f m∧IdX

η∧IdE∧X

Since E ∧W is contractible, f is null-homotopic.

From Section 2, we know that chromatic homotopy theory cares about the localization of

spectra. It is natural to ask when two spectra induce the same localization.

Definition 6.3 (Bousfield Localization). Two spectraE,F areBousfield equivalent if for each

spectrumX ,E∧X is contractible if and only ifF∧X is contractible. The Bousfield equivalence

class of E is denoted by 〈E〉.

Say 〈E〉 ⩾ 〈F 〉 if for each spectrum X , E ∧ X is contractible implies that F ∧ X is

contractible. Say 〈E〉 > 〈F 〉 if 〈E〉 ⩾ 〈F 〉 and 〈E〉 6= 〈F 〉.

Define 〈E〉 ∧ 〈F 〉 := 〈E ∧ F 〉 and 〈E〉 ∨ 〈F 〉 := 〈E ∨ F 〉.

A class 〈E〉 has a complement 〈E〉c if 〈E〉 ∧ 〈E〉c = 〈∗〉 and 〈E〉 ∨ 〈E〉c = 〈S〉.
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We can show that ∧ and ∨ satisfy the distributive laws.

(〈X〉 ∧ 〈Y 〉) ∨ 〈Z〉 = (〈X〉 ∨ 〈Z〉) ∧ (〈Y 〉 ∨ 〈Z〉)

(〈X〉 ∨ 〈Y 〉) ∧ 〈Z〉 = (〈X〉 ∧ 〈Z〉) ∨ (〈Y 〉 ∧ 〈Z〉)

Proposition 6.4. The Bousfield localizations LE
∼= LF if and only if 〈E〉 = 〈F 〉. If 〈E〉 ⩽ 〈F 〉

then LELF = LE and there is a natural transformation LF → LE .

There is another property that is similar to the relation between localizations and quotients

p−1S ⊗ S/p = 0 in commutative algebra.

Proposition 6.5. Given a self-map f : ΣdX → X , let Cf denote its cofiber and let X̂ be the

telescope. Then 〈X〉 = 〈X̂〉 ∨ 〈Cf〉 and 〈X̂〉 ∧ 〈Cf〉 = 〈∗〉.

For any spectrum E,

〈S〉 ⩾ 〈E〉 ⩾ 〈∗〉

〈S〉 ∧ 〈E〉 = 〈E〉

〈S〉 ∨ 〈E〉 = 〈S〉

〈∗〉 ∨ 〈E〉 = 〈E〉

〈∗〉 ∧ 〈E〉 = 〈∗〉

Thus, Bousfield equivalence classes with complements form a Boolean algebra BA. We have

a structure theorem for part of this algebra. Firstly, we have a corollary of Thick category

theorem.

Theorem 6.6 (Class Invariance Theorem). Let X,Y be p-local finite CW-complexes of types

m,n respectively. Then 〈X〉 = 〈Y 〉 if and only if m = n and 〈X〉 < 〈Y 〉 if and only if m > n.

Proof. Suppose that CX , CY are the smallest thick subcategories containingX,Y respectively.

ThenCX consists of finite complexes built fromX through cofibrations and retracts. Therefore,

〈X ′〉 ⩽ 〈X〉 for all X ′ in CX . Since X ∧ K(m − 1) = 0, X ′ ∧ K(m − 1) = 0. Thus,

CX ⊂ FHp,m. Since K∗(m)(X) 6= 0, CX ⊈ FHp,m+1. Therefore, CX = FHp,m. Similarly,

CY = FHp,n. Then CX = CY if and only if m = n. If CX = CY , then 〈X〉 ⩽ 〈Y 〉 and

〈X〉 ⩾ 〈Y 〉. Thus, CX = CY if and only if 〈X〉 = 〈Y 〉.

The inequality can be proved similarly.
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Pick a p-local CW-complex Xn of type n, the Bousfield equivalence class 〈Xn〉 and the

telescope 〈X̂n〉 are independent of the choice ofX . The following theorem gives a description

of the structure of part of BA.

Theorem 6.7 (Boolean Algebra Theorem). Let FBA ⊂ BA be the Boolean subalgebra gen-

erated by finite spectra and their complements. Let FBA(p) ⊂ FBA be the subalgebra of

p-local finite spectra and their complements in 〈S(p)〉. Then FBA(p) is the free (under comple-

ments, finite unions and finite intersections) Boolean algebra generated by the classes of the

telescopes 〈X̂n〉 for n ⩾ 0.

Proof. See [Rav92, Theorem 7.2.9].
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